If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x-3x^2+5=0
a = -3; b = 8; c = +5;
Δ = b2-4ac
Δ = 82-4·(-3)·5
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{31}}{2*-3}=\frac{-8-2\sqrt{31}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{31}}{2*-3}=\frac{-8+2\sqrt{31}}{-6} $
| 10j-2j-8j=16 | | (7t-9t^2)+13(5t+2)= | | 2(x-1)=2-x | | 3v-2v-v+4v+v=20 | | 6x-22=-7x+17 | | 4=68/y | | -9a+-a+-11a+16a=10 | | 2m2-9m+9=0 | | 12d2+17d+6=0 | | 2n-2n+4n-3n+3n=20 | | 14q-11q-3q+3q=18 | | 21/63=13/x | | 86=4x+38 | | 13p-9p=12p | | 10x−21=141−8x | | 1000e=999e | | ~3j=44.7 | | -m-3=27 | | a−21.5=12.9 | | -25x2+5x+10=0 | | B^4-20b+64=0 | | (2X/x-2)+(2/x)=3 | | 10a=9a+3 | | 6x+(4x-16)+(11x-31)=0 | | 6x+(4x-16)+(11x-31)=180 | | -13=f/7 | | 1/10x=6/5 | | -1/10x=-6/5 | | 74+(9x-11)+(4x-5)=0 | | 74+(9x-11)+(4x-5)=180 | | (1+5i)/(-3i)=0 | | (x1/2+1)1/2=2 |